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Abstract—Mobile Crowdsensing (MCS) with smart devices has
become an appealing paradigm for urban sensing. With the devel-
opment of 5G-and-beyond technologies, unmanned aerial vehicles
(UAVs) become possible for real-time applications, including wire-
less coverage, search and even disaster response. In this paper, we
consider to use a group of UAVs as aerial base stations (BSs) to
move around and collect data from multiple MCS users, forming
a UAV crowdsensing campaign (UCS). Our goal is to maximize
the collected data, geographical coverage whiling minimizing the
age-of-information (AoI) of all mobile users simultaneously, with
efficient use of constrained energy reserve. We propose a model-
based deep reinforcement learning (DRL) framework called
”GCRL-min(AoI)”, which mainly consists of a novel model-based
Monte Carlo tree search (MCTS) structure based on state-of-
the-art approach MCTS (AlphaZero). We further improve it by
adding a spatial UAV-user correlation extraction mechanism by
a relational graph convolutional network (RGCN), and a next
state prediction module to reduce the dependance of experience
data. Extensive results and trajectory visualization on three
real human mobility datasets in Purdue University, KAIST and
NCSU show that GCRL-min(AoI) consistently outperforms five
baselines, when varying different number of UAVs and maximum
coupling loss in terms of four metrics.

Index Terms—Mobile crowdsensing, Unmanned aerial vehicles,
Age of Information, Graph convolutional reinforcement learning.

I. INTRODUCTION

Mobile crowdsensing (MCS [1]) has been recognized as an

efficient and scalable way to acquire data for diverse smart

city applications like traffic control and road condition moni-

toring [2], [3]. Human-centric MCS heavily rely on classical

communication facilities like terrestrial base stations (BSs),

however they may not be able to cope with spontaneous and

temporary mass event like disaster response and public safety,

within a tolerable delay. This may become even more severe

when the BSs goes out of operation in emergencies. Therefore,

we consider to deploy multiple unmanned aerial vehicles

(UAVs) as mobile aerial BSs to provide additional network

capacity across space and time domains, with the following
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Fig. 1: Overall scenarios for UAV Crowdsensing (UCS).

advantages: (a) UAVs can move more flexibly to provide

wireless coverage for underlying mobile users, to form a new

UAV crowdsensing (UCS) campaign; (b) UAVs with high-

precision control platform, smart sensors and communication

interfaces can provide wider coverage for mobile users, to

enhance the quality of collected sensory data. Furthermore,

delay is critical in such UCS applications to acquire real-

time data from mobile users. Thus, we explicitly consider

“age of information” (AoI [4]) into our framework as a metric

to evaluate the timeliness of data collection, defined by the

elapsed period of time after the latest successful transmission

of the valid uploaded data from a mobile user to a UAV.

Fig. 1 shows an illustrative example, where UAVs move

around and receive data uploaded from multiple mobile users

(e.g., students and stuff members in campus environments).

The AoI of each mobile user will be reset if his/her collected

data is successfully received by a UAV in a timeslot, otherwise

it keeps increasing over time. Key challenges include, first,

long distance movement to collect user data, saving battery

power and keeping data freshness of each user are trading-off

for each UAV. Second, mobile users are uncontrollable, thus
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UAVs need to carefully design their trajectories according to

the time-varying spatial distribution of users to achieve our

goal. In addition, it is more efficient for UAVs to learn a

cooperative control policy and focus on their own responsible

areas in a collaborative way.
To calculate the optimal policy, it is hard to formulate the

above challenges as a closed-form optimization problem and

utilize classical mathematical methods (e.g., Lagrangian mul-

tiplier with KKT conditions) to obtain a solution. Furthermore,

existing research efforts are paid mainly to form as a Markov

Decision Process (MDP) and use value iteration algorithms

[5], [6] to find the data transmission scheduling schemes

and minimize the average AoI in multi-user uplink systems.

However, value iterations cannot deal with large state/action

space in a MDP with hundreds of mobile users. Recent

achievements [7], [8] along the direction of deep reinforcement

learning (DRL) paves the possible way for solving UAV navi-

gation problems in UCS. Most of existing works utilize model-

free DRL methods (e.g., DQN [9] and Rainbow [10]) to train

a suitable policy directly with experience, and then show the

best asymptotic performance by deep neural networks (DNNs).

However, these model-free solutions fail to efficiently utilize

limited real-world interactions from the task environment.

Although we can assume to infinitely explore and exploit from

experience data in simulation platforms, it is still impossible to

tolerate repeated failures (e.g., obstacle collision, dead battery)

in real-world scenarios. As a result, they keep collecting huge

amount of training data by trial-and-error, and take long time

for the model convergence.
To this end, in this paper, we propose a model-based

DRL solution called “GCRL-min(AoI)”, using MCTS (Al-

phaZero) [8] as the start point of design. GCRL-min(AoI)

successfully navigates a group of UAVs as mobile aerial BSs

to move around and collect data from multiple mobile users.

Our contribution is three-fold:

1) We design a novel model-based Monte Carlo tree search

(MCTS) structure using state-of-the-art approach MCTS

(AlphaZero) as the start point of design, with improve-

ment of adding next state prediction module. It uses

less interaction experience than model-free methods, by

learning a predictive state transition model to generate

possible next states, which reduces excessive depen-

dence on simulation platforms.

2) We employ a relational graph convolutional network

(RGCN) to extract spatial correlations between UAVs

and mobile users, to retrieve reliable state representa-

tions. It helps each UAV to pay attention to different

groups of mobile users and learn to collaborate in a

large-scale task area.

3) We perform extensive experiments on three real-world

human trajectory datasets in campus environments,

namely: Purdue University (USA), NCSU (USA) and

KAIST (South Korea). Results confirm that GCRL-

min(AoI) has robust improvements on data collection

ratio and episodic AoI, compared with five other base-

lines.

The remainder of the paper is organized as follows. Sec-

tion II reviews the related work. Section III presents system

model. Section IV describes problem definition and formu-

lation. Section V gives preliminaries. Section VI describes

our proposed approach GCRL-min(AoI). Section VII gives the

evaluation results. Finally, Section VIII concludes the paper.

II. RELATED WORK

In MCS, many existing solutions are proposed to utilize

UAVs for efficient data collection [11], [12]. For example,

Zhou et al. in [13] considered energy-efficient task allocation

and route planning problems by utilizing fixed-wing UAVs as

workers. Liu et al. in [14] developed a decentralized DRL

framework to maximize the energy efficiency of UAVs, while

ensuring UAV coverage and user fairness. Recently, AoI was

proposed as a metric to quantify the freshness of time-sensitive

information [15]. Hsu et al. in [5], [16] proposed to minimize

long-run average AoI by designing a dynamic MDP-based

transmission scheduling schemes over a wireless broadcast

network. Hu et al. in [17] designed a joint energy transfer

and data collection time allocation problem in UAV-assisted

wireless powered IoT system, and then solved it by combining

dynamic programming and heuristic algorithms. Li et al.
in [19] formulated data collection maximization problems to

deal with data collection from sensors to UAVs, and then

devised approximation algorithms. Liu et al. in [20] navigated

a group of multi-antenna UAVs to minimize AoI in a fixed

sensor network, with constrained energy reserve. However,

none of these approaches consider AoI minimization in UCS

for multiple mobile users. To the best of our knowledge, we

are one of the first along this direction.

III. SYSTEM MODEL

In our considered UCS scenario, we define a time-slotted

system and divide the time range into T equal timeslots.

Let U � {u|u = 1, 2, · · · , U} and M � {m|m =
1, 2, · · · ,M} denote UAVs and mobile users in a 3D target

area, respectively. We can convert their GPS coordinates (i.e.,

longitude, latitude and altitude) to the corresponding position

(xu
t , y

u
t , h

u) or (xm
t , ymt , 0). In addition, there are tall buildings

B � {b|b = 1, 2, · · · , B} with height hb, which UAVs should

avoid if hb ≥ hu. For simplicity, we assume UAVs and

users move around at 2D planes, and note that our approach

can be easily extend to 3D navigation scenarios by adding

altitude control. In each timeslot [t, t+1), each UAV u spends

τ time moving to a certain direction ϑu
move,t ∈ [0, 2π) at

speed vumove,t ∈ [0, vmax], where vmax denotes the maximum

speed of a UAV. Meanwhile, each mobile user m moves from

(xm
t , ymt , 0) to (xm

t+1, y
m
t+1, 0) and collects data individually,

given the expected sampling frequency vmcollect of the user

equipped smart device.

The system works as follows. At the beginning, U UAVs

are deployed at the same origin with full energy reserve Emax.

Meanwhile, M mobile users start to move around to collect

data with initial data volume δm0 = 0. In timeslot [t, t + 1),
each user m collects data and tries to upload all the remaining
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data to the nearest UAV u (as a mobile aerial BS). Without

loss of generality, we consider a mmWave-based data uplink

system where mobile users and UAVs are transmitters (Tx)

and receivers (Rx), respectively. Note that our system model

can work also at sub-6 GHz bands. Following [21], [22],

we assume that radio interference does not have a major

effect, which is a common assumption for most mmWave-

based systems with directional antennas; also the system in

this paper is noise-limited. Recall that path loss (PL) models

for the line-of-sight (LoS) and non-line-of-sight (NLoS) links

at certain mmWave frequencies are given as:

PLLoS
t (u,m) = αLoS + 10βLoS log

(
d3Dt (u,m)

)
,

PLNLoS
t (u,m) = αNLoS + 10βNLoS log

(
d3Dt (u,m)

)
,

(1)

where αLoS, βLoS, αNLoS, βNLoS are environment parameters

on floating intercept and slope, and d3Dt (u,m) is the 3D

distance between mobile user m and UAV u. Obviously,

PLt(u,m) increases as dt(u,m) increases. For LoS and

NLoS, we consider a ground-to-air channel model, where a

UAV u locates at height hu, while each user is modeled

as cylinders with the average height huser and the average

diameter of guser. For a snapshot analysis, we assume mobile

users’ density follows Poisson distribution with parameter λ.

A mobile user carrying smart device is assumed to located

at height hdevice, where hdevice < huser. Hence, if a user

uploads data to a UAV, the surrounding buildings and other

users may block the LoS transmission path. According to [23],

we calculate the probability of LoS in timeslot [t, t+ 1) by:

P
LoS
t (u,m) = exp

(
−λguserd

2D
t (u,m)

huser − hdevice

hu − hdevice

)
,

(2)

where d2Dt (u,m) is the Euclidean distance between user m
and UAV u. Thus, their average path loss is denoted by

PLt(u,m) = P
LoS
t (u,m) · PLLoS

t (u,m) + P
NLoS
t (u,m) ·

PLNLoS
t (u,m), where P

NLoS
t (u,m) = 1− P

LoS
t (u,m).

Furthermore, due to the minimum acceptable received

power level, UAVs at a high altitude have limited sensing

range for data collection. According to 5G NR [24], we choose

maximum coupling loss (MCL) to represent UAV’s maximum

sensing range in each timeslot, defined as the maximum loss

in the conducted power level that a system can tolerate and

still be operational. Let GTx and GRx be the gains of Tx and

RX antennas, respectively. For each user m, we define data

upload and AoI update as follows.

Definition 1. (Collected Data Upload) In timeslot [t, t + 1),
a user m tries to upload all remaining data to the nearest
UAV u. The uploading process is successful if PLt(u,m) is
tolerable. Thus, the user m’s remaining data δmt is updated
to δmt+1 by:

δmt+1 =

{
0, if PLt(u,m)−GTx −GRx ≤ MCL

δmt + vmcollect · τ, otherwise.
(3)

Considering different data collection capability vmcollect of each
user’s smart device, the successfully collected data amount is
computed by

∑M
m=1 T · vmcollect · τ − δmT .

Definition 2. (AoI Update) In timeslot [t, t+1), we use AoI κm
t

of user m to describe the timeliness of data upload, updated
by:

κm
t+1 =

{
1, if PLt(u,m)−GTx −GRx ≤ MCL

κm
t + 1, otherwise.

(4)

Following [25], we further consider the the limited battery

life of rotary-wing UAVs. The propulsion energy consumption

of UAV u during each timeslot [t, t + 1) is given by ωu
t =

τ ·
[
c1

(
1+

3·(vu
move,t)

2

(vtip)2

)
+c2

(√
1 +

(vu
move,t)

4

4v̄4 − (vu
move,t)

2

2v̄2

) 1
2

+

1
2c3(v

u
move,t)

3
]
, where c1, c2, c3 are constants that depend on

UAV’s weight, rotors, blades and air density. vtip and v̄ are

the tip speed and average speed of the rotor, respectively. If a

UAV u runs out of battery, it will stop receiving users’ data

immediately, as task failure in this paper.

IV. PROBLEM DEFINITION AND FORMULATION

A. Problem Definition

We first define four evaluation metrics to justify the comple-

tion of UCS tasks. First is data collection ratio that describes

the collected data amount over all the available data of mobile

users, denoted by:

ψ =

∑M
m=1 T · vmcollect · τ − δmT∑M

m=1 T · vmcollect · τ
, (5)

Second is the average user coverage ρ̄ that evaluates the

average covered mobile users over time of all UAVs:

ρ̄ =
1

T

∑T

t=1
|Kt|, (6)

where Kt ⊂ M is the set of mobile users whose data are

successfully uploaded to UAVs, i.e., PLt(u,m) − GTx −
GRx ≤ MCL. Third is the average energy consumption

ratio ζ̄ = 1
U ·Emax

∑U
u=1

∑T
t=1 ω

u
t . Finally, the episodic AoI

is defined as:

κ̄ =
1

T

1

M

∑T

t=1

∑M

m=1
κm
t , (7)

Note that κ̄ ≥ 1. Our goal is to maximize data collection

ratio ψ and average user coverage ρ̄ simultaneously, while

minimizing episodic AoI κ̄ given limited UAV energy.

B. Problem Formulation

On designing a DRL model, we formulate the considered

problem as a MDP, containing: state space S � {st}, action

space A � {at}, state transition model T : S × A → S , and

reward function r(st,at) in each timeslot [t, t+ 1).
A state st includes two groups of tensors. The first is the

current 3D position (xu
t , y

u
t , h

u) of each UAV u, and remain-

ing energy Emax −
∑t−1

i=1 ω
u
i ; and the second is each mobile

user m’s position (xm
t , ymt ), remaining data δmt and AoI κm

t

at the beginning of timeslot [t, t + 1). at denotes a joint de-

cision, including each UAV’s action au
t = (ϑu

move,t, v
u
move,t).

T : S×A → S is the state-transition function from st to st+1,

according to the system model in Section III. Without loss of
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generality, we assume that UAVs observe st at the beginning

of each timeslot [t, t+1), and then take actions at. Next, the

state transits to st+1 by model T , and finally we get a certain

reward rt = r+t + r−t at the end of this timeslot to evaluate

this decision, where:

r+t =
1

M

M∑
m=1

ccollect(δ
m − δmt+1) + cAoI(κ

m
t − κm

t+1). (8)

Here, r−t denotes the penalty when a UAV u hits obstacles

or runs out of energy; ccollect, cAoI are constants. We aim to

train a policy π that defines a probability distribution over at

for each state st. The objective of π is to select the action

to maximize the total sum of discounted future reward with a

discount factor γ ∈ [0, 1), as:

max
π

E
[∑T

t=1
γt rt(st,at)

]
s.t. π(st) ∈ A, T (st,at) ∈ S.

(9)

Formally, Eqn. (9) is NP-hard, and thus intractable. It is hard to

form it as a traditional constrained optimization problem, since

the policy π cannot be explicitly expressed in a closed-form

equation. Alternatively, we consider utilizing DRL method.

V. PRELIMINARIES

The state-of-the-art tree-search method MCTS (Alp-

haZero) [8] estimates the value of each nodes (to save re-

cursive state value on a tree) by utilizing value prediction net-

works [26], rather than maintaining a complex value function

by exhaustive search. The state value estimation process of an

N -depth MCTS (AlphaZero) is denoted by:

V (n)(st) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
fval(st), if n = 1

1

n
V (1)(st) +

n− 1

n
max
a

(
r(st,a) + γV (n−1)(st+1)

), otherwise.

(10)

where fval is a DNN that estimates the certain value of

given state st; V (n)(st) is the node value of st on the n-

th layer of the tree, updated layer by layer recursively. The

learning schemes replaces the traditional exhaustive search

by just looking ahead N steps, which has been used for

decision-making in complex search problems, from the game

of Go [7], [8] to robot navigation [27]. Although model-free

DRL approaches have achieved a great success in some areas,

severe and costly failures (e.g., obstacle collision, dead battery)

are still big problem for UAVs in real world scenarios.

By contrast, model-based DRL methods increase the sample

data efficiency, with fewer interactions to real environment.

Sutton et al. proposed Dyna-Q algorithm [28] in which the

construction of the environment model and sampling are car-

ried out simultaneously. The constructed environment model

can decrease the interaction between the agent and the envi-

ronment and make the agent perform value iterations quickly,

which motivates us to consider a model-based solution.

VI. PROPOSED SOLUTION: GCRL-MIN(AOI)

GCRL-min(AoI) mainly consists of a novel model-based

MCTS structure using approach MCTS (AlphaZero) as the

start point of design, with improvement introduced as follows.

A. UAV-User Spatial Correlation Extraction by Relational
Graph Convolutional Network

Understanding the interactions (i.e., spatial relations) be-

tween UAVs and mobile users is key to efficiently navigate

multiples UAVs to fly around as mobile aerial BSs. Previous

works [30] show that using spatial self-attention or graph

neural network (GNN) can improve both interpretation and

performance of collision avoidance, by modeling one-way

human-robot interactions. Although our problem is far more

difficult than simply avoiding obstacles, it inspires and mo-

tivates us to map UAVs and mobile users as “nodes” in a

directed graph, denoted as Gt = (N , E), where |N | = U+M .

Here N and E are sets of nodes and edges in Gt, respectively.

The edge ei,j ∈ E indicates how much attention a node i
pays to a node j, or the importance of a node j to a node i.
Since mobile users’ intentions or hidden policies of movement

are not known as a priori, this pairwise relation is also not

known. However, it can be inferred with a pairwise similarity

function (as relation inference). After the relations between

all nodes are inferred, we utilize RGCN [31] to propagate

relational information from node to node, and compute the

state representations for each UAV and user. As shown in

Fig. 2, the forward process is depicted by:

zu
t = fUAV(sut ), ∀u ∈ U , (11a)

zm
t = fuser(smt ), ∀m ∈ M, (11b)

Zt = concat
(
{zu

t }Uu=1, {zm
t }Mm=1

)
, (11c)

Ct =
[
f(zi

t, z
j
t )
]
|N |×|N|

= softmax(ZtWcZ
�
t ), (11d)

H
(0)
t = Zt,

H
(l+1)
t = ReLU(CtH

(l)
t W

(l)
h ) +H

(l)
t , (11e)

{ηu
t }Uu=1, {ηm

t }Mm=1 = split
(
H

(−1)
t

)
(11f)

First, we initialize values of vertices N by state st in

timeslot [t, t + 1). Since each UAV’s part of state sut =
{xu

t , y
u
t , h

u
t , Emax − ∑t−1

i=1 ω
u
i } and each user part of state

smt = {xm
t , ymt , δmt , κm

t } have different meanings and scales,

we use two multi-layer perceptions (MLPs) fUAV(·) and

fuser(·) to embed them into a latent space with the same

dimension (see Eqn. (11a)–(11b)). Then, we concatenate all

these features to a matrix Zt as GCN inputs (see Eqn. (11c)).

As discussed in Section VII-C, we finally use an embedded

Gaussian [32] as the similarity function to compute a UAV-

user relational matrix Ct. The pairwise form of cijt ∈ Ct

is given by f(zi
t, z

j
t ) = exp[(Wiz

i
t)

�(Wjz
j
t )], while the

matrix form of Ct is given by Ct = softmax(ZtWcZ
�
t ),

where Wc = WiW
�
j (see Eqn. (11d)). A learned correlation

is illustrated in Fig. 2, where the thickness of the line indicates

the strength of correlations between UAVs and users.
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Fig. 2: Diagram of GCRL-min(AoI).

Then, in each timeslot [t, t + 1), with the feature matrix

Zt and relation matrix Ct, we use a RGCN to compute

the pairwise interaction features. The message passing rule is

defined by Eqn. (11e), where W
(l)
h is a layer-specific trainable

weight matrix, and H
(l)
t is the node-level features at level l

weighted by the UAV-user relations stored in matrix Ct. Let

H
(0)
t = Zt. After multiple message passing processes by layer

propagation, we split the last-level features H
(−1)
t into UAV

part of features {ηu
t }Uu=1, and user part of features {ηm

t }Mm=1.

Note that the above process learns the spatial correlation

between UAVs and users without changing the dimension of

features (i.e., η and z have the same dimensions), which is

beneficial for user location prediction and state value estima-

tion in the following.

B. Model-based MCTS (AlphaZero) with Improvement of Next
State Prediction for Multi-UAV Navigation

As shown in Fig. 2, we utilize MCTS (AlphaZero) as an

N -step planning module for multiple UAVs as the start point

of the design, performing state value estimation up to N steps

in the future, and select the action with the maximum N -step

return, denoted by at = maxa
(
r(st,a)+γV (N)(st+1)

)
. Here

V (N) is the value of head node in MCTS (AlphaZero), defined

by Eqn. (10). However, MCTS (AlphaZero) estimates state

values based on many simulated trajectories (st,at, rt, st+1).
As said earlier, a practical UCS system in real-world scenarios

should be online learning. Therefore, inspired by several

model-based solutions [28], [29], we propose a novel model-

based MCTS structure for multi-UAV navigation, which learns

policy π and transition model T simultaneously. In other

words, it can not only optimize policy π by estimating state

value V , but also generates the estimated next state σt+1 rather

than directly getting st+1 from simulations.

1) Next state prediction: With the help of RGCN, we use

each UAV u’s features ηu
t to predict its next state (including

Algorithm 1 Pseudocode of GCRL-min(AoI)

1: Initialize parameters of fUAV, fuser, fpred
1 , fpred

2 , fval, G;

2: for Episode in 1, 2, · · · do
3: for Timeslot [t, t+ 1) in 1, 2, · · · , T do
4: Get the current state st;
5: Calculate the state representation {ηu

t }Uu=1,

{ηm
t }Mm=1 of st with fUAV, fuser, respectively;

6: for a in action space A do
7: Predict σt+1(st,a) with fpred

1 , fpred
2 ;

8: end for
9: Estimate state value V (N)(st) by Eqn. (13);

10: Choose the best action as at by Eqn. (14);

11: Interact by at, and get rt, st+1;

12: Compute Lpredict, Lvalue by Eqn. (15) and (16);

13: Update fpred
1 , fpred

2 by minimizing Lpred;

14: Update fval by minimizing Lval;

15: t = t+ 1;

16: end for
17: end for

its location and remaining energy level) by a shared Multilayer

Perceptron (MLP) fpred
1 , given a certain action au from A.

Similarly, considering user motion is not influenced by each

UAV’s action, we directly use ηm
t to predict a user m’s next

state (including its next location, remaining data and AoI) by

another shared MLP fpred
2 . We concatenate these estimated

states and generate the estimated next state σt+1, as:

σt+1(st,a) = concat
(
{fpred

1 (ηu
t ,a

u)}Uu=1, {fpred
2 (ηm

t )}Mm=1

)
.

(12)

Note that σt+1(st,a) has the same dimensions as st+1,

that represents the predicted next state by taking action a,

given the observed state st. Here we set two shared MLPs

fpred
1 , fpred

2 instead of a powerful MLP with all UAVs’ and

users’ ηt as inputs, in order to scale well with any amount

of UAVs/users, given that some users or even UAVs may quit

the task sometime in between.

2) State value estimation: Imperfect learned value func-

tions can lead to suboptimal actions due to local minima.

With the help of MLP fval, N -depth MCTS (AlphaZero) looks

forward N steps to the future to provide a better estimate of

the state values, which is beneficial to find a far-sighted policy

π and save time of doing exhaustive search like the traditional

tree search methods. As shown in Fig. 2, our value estimation

module can predict the N -step value V (N)(st) of the state, by

simply modifying Eqn. (10) as:

V (n)(st) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
fval(st), if n = 1

1

n
V (1)(st) +

n− 1

n
max
a

(
r(st,a) + γV (n−1)(σt+1)

), otherwise.

(13)

where σt+1 is calculated by Eqn. (12). Similar to MCTS

(AlphaZero), we choose the best action as at in timeslot
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(a) Purdue

(b) NCSU (c) KAIST

Fig. 3: Illustrative UAV trajectories in three datasets.

[t, t+ 1) by:

at = max
a

(
r(st,a) + γV (N)(σt+1)

)
. (14)

C. Algorithm Details and Computational Complexity Analysis

Pseudocode of GCRL-min(AoI) is given in Algorithm 1.

First, we adopt Xavier uniform initializer [33] for DNN

parameters (Line 1). Then, given state st in each timeslot

[t, t + 1), we calculate the state representation of UAVs and

users by RGCN (Line 3-5). After predicting the next state

σt+1(st,a) of executing available actions a ∈ A (Line 6-8),

we calculate the N -step state value V (N)(st), and choose the

best actions a for all UAVs as at (Line 9-10). Next, we use

at to interact with the environment and get the reward rt and

real next state st+1 (Line 10). Finally, we calculate the state

prediction loss Lpred and value estimation loss Lval by:

Lpred =
[
st+1 − σt+1(st,at)

]2
, (15)

Lval =
[
rt + γV (N)(st+1)− V (N)(st)

]2
. (16)

We optimize parameters of the prediction network fpred
1 , fpred

2

and value network fval, by minimizing Lpred and Lval,

respectively.

GCRL-min(AoI) is based on a tree search architecture with

several fully connected (FC) layers, whose computational

complexity can easily be optimized by some existing meth-

ods [34], [35] as:

O
(χ ·Dchild · I ·∑Ω

i=1 D
inDout

Λ

)
, (17)

where χ, Dchild, I, Λ denote the number of parallel searches,

children per node, iterations of recursion and available CPU

cores respectively; Ω is the number of FC layers, and

Din, Dout are the dimensions of input vector and output

vector of the i-th FC layers. Note that Dchild ≤ |A| in our

UCS problem.

VII. PERFORMANCE EVALUATION

A. Dataset Descriptions and Simulation Settings

We use three real-world student trajectory data from Pur-

due University [36], NCSU and KAIST [37]. The traces

are generated by students who lived in campus dormitories

carrying smartphones with GPS receivers. Google Map is used

to mark the campus map data, including student positions,

shapes of buildings, lakes and mountains in the environment.

Note that there exists lots of GPS data offsets, which are

removed by setting the maximum tolerated error 100m for data

preprocessing, and eventually we have 59, 33, 92 traces from

Purdue University, NCSU and KAIST datasets, respectively.

Each trace corresponds to a mobile user.

In our simulation, by referring to the technical report of

industrial UAVs like DJI Matrice 600 [38], we consider

T = 120 with τ = 15 seconds and the battery capacity is

Emax = 4500mAh. Following [25], we set c1 = 79.8563,

c2 = 88.6279, c3 = 0.0185, vtip = 120m/s, v̄ = 4.03m/s and

vmax = 18m/s for calculating energy consumption of a UAV.

Following [23], we investigate mmWare bands at 28GHz and

set hu = 120m, huser = 1.7m, hdevice = 1.3m, guser = 0.5m,

λ = 0.005, gTx = 0dB gRx = 5dB for calculating the

probability of LoS by Eqn. (2). We set αLoS = 84.64dB,

αNLoS = 113.63dB, βLoS = 1.55 and βNLoS = 1.16 for

calculating path loss, by Eqn. (1). Note that, UAVs should

avoid any tall building where hb ≥ 120m. For model training,

we set γ = 0.95, ccollect : cAoI = 1 : 10, and learning rate,

batch size as 0.001 and 128, respectively.

We use Pytorch 1.8.1 to implement our proposed solution,

and all the codes are run on Ubuntu 18.04.2 LTS with Intel(R)

Xeon(R) Gold 6238 CPU @2.10GHz with 112 CPU cores. In

each following experiment, we train 500 episodes and select

the model with lowest episodic AoI for testing. We conduct

four sets of experiments, including impact of hyperparameters,

time and space cost comparison, ablation study and comparing

with five baselines. We utilize episodic AoI κ̄, data collection

ratio ψ, average user coverage ρ̄, and average energy con-

sumption ratio ζ̄ as four metrics for comparisons.

B. Illustrative Student/UAV Trajectories

In Fig. 3, we show the movement trace of UAVs/students

when U = 2 and find noticeable cooperation among UAVs.

Each UAV is mainly responsible for a part of the task area

and always moves back and forth. This is because that (a)

since each UAV has limited coverage while students keep

moving and collecting data, one single shot of sensing is

obviously not enough to collect all remaining data, (b) in order

to optimize episodic AoI, UAVs should fully consider each

student’s AoI, thus sometimes flying around the corners to

access remote students, as shown in Fig. 3b, and (c) a good

cooperative strategy can decrease each UAV’s average moving

distance, which saves energy. These benefits are brought by

our proposed RGCN module, which learns UAV-user spatial

correlation and navigates UAVs to pay attention to different

students in need. Note that although GCRL-min(AoI) has

1034
Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on May 01,2024 at 07:50:02 UTC from IEEE Xplore.  Restrictions apply. 



(a) κ̄ (b) ψ (c) ρ̄ (d) ζ̄

Fig. 4: Impact of no. of UAVs in Purdue.

(a) κ̄ (b) ψ (c) ρ̄ (d) ζ̄

Fig. 5: Impact of MCL in Purdue.

TABLE I: Impact of different hyperparameters.

Purdue NCSU KAIST

N κ̄ ψ ρ̄ ζ̄ κ̄ ψ ρ̄ ζ̄ κ̄ ψ ρ̄ ζ̄

Square

2 8.964 0.892 0.358 0.809 20.894 0.772 0.105 0.821 10.579 0.790 0.280 0.852
3 6.398 0.916 0.369 0.806 18.547 0.797 0.118 0.823 8.596 0.821 0.298 0.844
4 6.403 0.909 0.369 0.807 21.132 0.753 0.101 0.826 9.215 0.814 0.286 0.842
5 6.384 0.917 0.371 0.806 22.548 0.734 0.099 0.829 8.976 0.819 0.295 0.839

Gauss.

2 4.501 0.949 0.412 0.804 9.667 0.889 0.211 0.805 4.889 0.962 0.463 0.811
3 3.400 0.977 0.433 0.802 7.999 0.918 0.227 0.802 2.748 0.986 0.472 0.803
4 3.387 0.979 0.436 0.802 7.795 0.921 0.228 0.802 2.741 0.988 0.473 0.802
5 3.384 0.981 0.437 0.801 7.690 0.923 0.228 0.802 2.739 0.988 0.475 0.801

Cosine

2 6.742 0.937 0.402 0.807 17.341 0.801 0.129 0.820 8.298 0.833 0.368 0.832
3 5.124 0.941 0.409 0.807 15.365 0.823 0.149 0.817 6.235 0.895 0.389 0.820
4 5.146 0.940 0.408 0.808 15.356 0.826 0.148 0.817 6.211 0.899 0.389 0.820
5 5.175 0.940 0.408 0.809 16.976 0.824 0.148 0.817 6.209 0.901 0.393 0.819

already shown a good performance to meet the demand of

students in three datasets, deploying only 2 UAVs is not

enough, as confirmed in Fig. 4c, Fig. 6c and Fig. 8c.

C. Impact of Hyperparameters

We select three key hyperparameters from proposed RGCN

module and MCTS structure, including (a) different similarity

functions that determine the learning speed of UAV-user spatial

correlation extraction, and (b) N as the maximum depth of

MCTS. We fix U = 2. As shown in Table I, we see that all

these hyperparameters yield a lowest point in terms of episodic

AoI κ̄. We observe that using cosine and square functions

cannot bring equal AoI optimization effect as embedded

gaussian function does. This is because the latter computes

the relational response η on a UAV/user’s features z as a

weighted sum of features over all others in RGCN, which

better expresses the UAV-user spatial correlation. Then, we

see that the given a similarity function, increasing N from

N = 2 will give lower episodic AoI κ̄. This is because deeper

TABLE II: Computational Complexity by time cost (ms).

Method Purdue NCSU KAIST
GCRL-min(AoI) 7.998 5.677 11.003
DRL-freshMCS 33.866 25.165 41.978

Muzero 9.867 6.993 15.497
ACKTR 15.223 11.035 23.778

AoI-aware DRQN 21.999 17.097 33.008

tree search obviously brings more accurate value estimations.

However, this improvement is quite limited when further

improving N after N = 3. Furthermore, from Eqn. (17),

the computational complexity will rise exponentially as N
increases. On the other hand, Gaussian function produces

better results than Square and Cosine similarity functions on

average. Therefore, we choose Gaussian function with N = 3
as the best hyperparamters used in the following experiments.

D. Computational Complexity Analysis

Computational complexity (by time cost) is shown in Ta-

ble II. The running time to produce actions in a timeslot

by CGRL-min(AoI) is much faster than other baselines, and

slightly lower than another tree-based method Muzero. This

is because we utilize RGCN instead of CNNs or RNNs for

feature extractions, which is easy to utilize parallel CPU cores.

That is, CGRL-min(AoI) do not use graphic card memory at

all, but its time cost is still in the scale of millisecond, which

is negligible and cost-effective in real UAV deployment where

GPUs can be expensive and of big size.

E. Ablation Study

The ablation study is performed by gradually removing two

key components of our solution, i.e., RGCN and next state
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(a) κ̄ (b) ψ (c) ρ̄ (d) ζ̄

Fig. 6: Impact of no. of UAVs in NCSU.

(a) κ̄ (b) ψ (c) ρ̄ (d) ζ̄

Fig. 7: Impact of MCL in NCSU.

prediction (pred). Results are shown in Table III. We see that

the complete version CGRL-min(AoI) achieves 71%, 66% and

63% lower episodic AoI than GCRL-min(AoI) w/o RGCN in

Purdue, NCSU and KAIST datasets, respectively. This con-

firms that RGCN successfully extracts the inter-correlations

between UAVs and users more efficiently, especially when the

environment (i.e., NCSU campus which have north/south parts

connecting by two entrances that students go through) is more

complicated (compared to Purdue and KAIST). Furthermore,

GCRL-min(AoI) achieves 37%, 27% and 31% lower episodic

AoI than GCRL-min(AoI) w/o pred in three datasets. This is

because the model-based next state prediction can reduce the

demand of experience data (than model-free methods) to train

a good policy with accurate state value estimations.

F. Comparing with Five Baselines

We compared GCRL-min(AoI) with five baselines in Pur-

due, NCSU and KAIST datasets on four previously introduced

metrics when changing the number of UAVs and MCL.

• DRL-freshMCS [20]: It navigates a group of UAVs with

multiple antennas to minimize AoI, which is considered

as the state-of-the-art approach for AoI-aware MCS. In

order to apply DRL-freshMCS in our UCS scenarios, we

map our states into an 80×80 images, to fit the dimension

of CNN inputs in DRL-freshMCS.

• MuZero [39]: It is the latest successor of MCTS (Al-

phaZero), which shows superior performance in Chess,

Shogi and even Atari games. It learns to predict reward

function and next state together, and updates DNN param-

TABLE III: Ablation study (when U = 2).

Dataset Method κ̄ ψ ρ̄ ζ̄

Purdue

GCRL-min(AoI) 3.400 0.977 0.433 0.802
GCRL-min(AoI) w/o RGCN 11.547 0.882 0.378 0.811

GCRL-min(AoI) w/o pred 5.397 0.946 0.421 0.805
GCRL-min(AoI) w/o RGCN, pred 12.837 0.878 0.365 0.809

NCSU

GCRL-min(AoI) 7.999 0.918 0.227 0.802
GCRL-min(AoI) w/o RGCN 23.578 0.788 0.109 0.816

GCRL-min(AoI) w/o pred 10.991 0.912 0.223 0.809
GCRL-min(AoI) w/o RGCN, pred 25.001 0.772 0.103 0.820

KAIST

GCRL-min(AoI) 2.748 0.986 0.472 0.803
GCRL-min(AoI) w/o RGCN 7.385 0.843 0.402 0.824

GCRL-min(AoI) w/o pred 3.998 0.971 0.463 0.818
GCRL-min(AoI) w/o RGCN, pred 9.458 0.799 0.375 0.831

eters every N steps periodically, which is considered as

the state-of-the-art approach for tree-based DRL methods.

• ACKTR [40]: It is a well-known off-policy DRL ap-

proach in Atari benchmarks, using an approximate cur-

vature called KFAC. For fair comparison, we add a classic

GCN as a feature extraction module.

• AoI-aware DRQN [41]: It is another DRL-based solution

for AoI-aware vehicle-to-vehicle networking, which con-

siders high spatial mobility and temporally varying traffic

information arrivals. Based on DRQN [42], it optimizes

AoI in long-term tasks, which can directly run on our

UCS scenarios by treating vehicles as mobile users.

• Random: We sample action at from A randomly.

Results are shown in Fig. 4 – Fig. 9. We make three important

observations.

GCRL-min(AoI) consistently outperforms all five baselines

in terms of episodic AoI in three datasets. The reason is

that DRL-freshMCS utilizes CNNs to extract spatial features
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Fig. 8: Impact of no. of UAVs in KAIST.

(a) κ̄ (b) ψ (c) ρ̄ (d) ζ̄

Fig. 9: Impact of MCL in KAIST.

from a designed meta image but not consider the mobility

and correlation between UAVs and users. ACKTR and AoI-

aware DRQN both integrate UAVs’ and users’ features by

simply mixing them as a high-dimensional vectors, which

is insufficient for effective DRL training. MuZero performs

better than the rest of baselines but still worse than our method.

This is because MuZero predicts reward function and next

state together, which needs more training episodes to coverage,

since our reward function and UCS scenario is complex than

common DRL benchmarks.

As shown in Fig. 4, Fig. 6 and Fig. 8, we set MCL =
117dB and show the impact of number of UAVs. With more

employed UAVs, the attained episodic AoI keeps decreasing

and even approaches to the lower bound 1 when U = 11. This

is because more UAVs brings higher user coverage and data

collection ratio, with lower energy consumption than fewer

UAVs. In our UCS task with fixed task time, the total amount

of data that need to be collected only depends on the number

of users and their data collection capability, which is upper-

bounded by
∑M

m=1 T · vmcollect · τ , as in Eqn. (5). Deploying

more UAVS will help reduce the “collection burden” of each

UAV, and thus promoting more efficient patterns of UAV

cooperation. However, when U > 5, the gain of most methods

becomes relatively minor in Purdue and KAIST datasets,

because the data collection ratio saturates (to 1) in Fig. 4b

and Fig. 8b. On the other hand, deploying more UAVs will

directly expand the action space size, reducing the gap among

different methods.

Results of varying MCL are shown in Fig. 5, Fig. 7 and

Fig. 9, when we set U = 2. In all datasets, when increasing

MCL, the episodic AoI keeps decreasing for most methods.

This is because MCL influences the maximum coverage of

certain radio access technology (we set MCL between 115dB

and 123dB of 5G frequency 28GHz in this paper [22]). In

our UCS task, the collected data upload and AoI update are

both determined by MCL (see Eqn. (5) and (6)). Higher

MCL allows each UAV to move a shorter distance but cover

more users, which directly contributes to the optimization of

episodic AoI.

VIII. CONCLUSION

In this paper, we proposed GCRL-min(AoI), a novel model-

based DRL framework to navigate a group of UAVS as aerial

BSs to meet the MCS demand of underlying mobile users,

to minimize their attained AoI. Specifically, we proposed a

novel model-based MCTS structure based on state-of-the-art

approach “MCTS (AlphaZero)”. We improve it by adding

a spatial UAV-user correlation extraction mechanism by a

RGCN, and a next state prediction module to successfully re-

duce the use of experience data. Results on Purdue University,

KAIST and NCSU campuses datasets confirm that GCRL-

min(AoI) consistently outperforms five other baselines.
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