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Abstract—Spatial crowdsourcing (SC) has proven as a promis-
ing paradigm to employ human workers to collect data from
diverse Point-of-Interests (PoIs) in a given area. Different from
using human participants, we propose a novel air-ground SC
scenario to fully take advantage of benefits brought by unmanned
vehicles (UVs), including unmanned aerial vehicles (UAVs)
with controllable high mobility and unmanned ground vehicles
(UGVs) with abundant sensing resources. The objective is to max-
imize the amount of collected data, geographical fairness among
all PoIs, and minimize the data loss and energy consumption,
integrated as one single metric called “efficiency”. We explicitly
explore both individuality and cooperation natures of UAVs and
UGVs by proposing a multi-agent deep reinforcement learning
(MADRL) framework called “h/i-MADRL”. Compatible with all
multi-agent actor-critic methods, h/i-MADRL adds two novel
plug-in modules: (a) h-CoPO, which models the cooperation
preference among heterogeneous UAVs and UGVs; and (b) i-EOI,
which extracts the UV’s individuality and encourages a better
spatial division of work by adding intrinsic reward. Extensive
experimental results on two real-world datasets on Purdue and
NCSU campuses confirm that h/i-MADRL achieves a better
exploration of both individuality and cooperation simultaneously,
resulting in a better performance in terms of efficiency compared
with five baselines.

Index Terms—Air-ground spatial crowdsourcing, Multi-agent
deep reinforcement learning, Intrinsic reward

I. INTRODUCTION

Spatial crowdsourcing (SC [1], [2]) is an attractive paradigm

where human participants join data collection campaign (e.g.,

OpenStreetMap [3] and Waze [4]). Different from that, air-

ground SC by unmanned vehicles (UVs), including unmanned

aerial vehicles (UAVs, e.g., drones) and unmanned ground

vehicles (UGVs, e.g., driverless cars), are able to provide

ubiquitous sensing services in dangerous or inaccessible task

areas, e.g., earthquake and city fire. These controllable UVs are

usually equipped with high-speed data receivers like WiFi/5G,

able to collect sensory data from Point-of-Interests (PoIs) like

CCTV cameras and alarm sensors within a larger range com-

pared to human participants. To achieve higher data rates and

quality-of-service (QoS), we consider to employ the air-ground

non-orthogonal multiple access (AG-NOMA [5]) technique in

the data upload process. Specifically, a UAV collects the uplink

data and then relay to a UGV, where the latter not only serves

as the mobile base stations (BSs) for decoding but also collects

the data from PoIs as well. The overall goal is to maximize

the amount of collected data from all PoIs, given the limited

energy reserve of UVs when they are moving around and

collecting data back and forth.

To achieve this, key challenges are as follows. First, UAVs

are responsible for data collection only, however UGVs have

another role as the mobile BS; and thus correlation between

heterogeneous two types of UVs becomes more complicated

for cooperative task completion. Second, UAVs and UGVs

have different mobility patterns, i.e., UAVs have a relatively

higher movement speed and able to move in any direction,

while UGVs need to strictly follow the lane and some of the

corner areas are inaccessible, which poses a greater challenge

to the spatial division of work between UVs.

To this end, the goal of this paper is to design control

algorithms to navigate a group of UVs and explore both

individuality and cooperation for air-ground SC tasks. How-

ever, it is hard to formulate it as a closed-form optimization

problem. Thus, We opt for heuristic solutions by considering

a time-slotted system, which can be regarded as a Decen-

tralized Partially Observable Markov Decision Process (Dec-

POMDP). Among many existing solutions to Dec-POMDP,

multi-agent deep reinforcement learning (MADRL) is be-

coming increasingly popular for several sequential decision-

making scenarios [6] [7] [8] with multiple controllable agents.
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Exemplar methods like QMIX [9], MAPPO [10] and IPPO

[11] all assumed that agents are homogeneous with fully

cooperative or fully competitive motivations, where agents

hardly give up a portion of their short-term individual reward,

to increase the long-term reward of the entire team. However,

our considered air-ground SC tasks are targeting a mixture of

different optimization goals where some UVs may have to give

up a portion of their short-term individual reward, but increase

the long-term reward of all UVs. For example, to fully explore

the mobility benefits brought by UAVs, they need to spend

more energy and collect more data if compared with fixed-

lane driving UGVs, while UGVs may have to stay within a

certain range of UAVs to decode their relayed data as mobile

BSs. The contribution of this paper is four-fold:

• We propose a novel scalable and effective framework

called h/i-MADRL for air-ground SC tasks by dis-

tributed MADRL. It consists of one base module and two

plug-in modules. The former can be almost any multi-

agent actor-critic algorithms, and the latter effectively

exploits the individuality and cooperations among UVs.

• We propose i-EOI, the intrinsic reward based emergence

of individuality, that encourages a better spatial division

of work between UAVs and UGVs.

• We propose h-CoPO, a heterogeneous Coordinated Policy

Optimization that incorporates a social psychology prin-

ciple to learn neural controller for both UAVs and UGVs,

by accurately modeling their cooperation preferences.

• Extensive experimental results and trajectory visualiza-

tions based on two real-world datasets on Purdue and

NCSU campuses confirm that h/i-MADRL achieves a

better exploration of both individuality and cooperation

simultaneously, resulting in higher efficiency when com-

pared with five baselines.

The rest of the paper is organized as follows. We review

related works in Section II. We present the system model

in Section III. Problem definition and formation are given

in Section IV and the solution is presented in Section V.

Experimental results are supplemented in Section VI and

finally, Section VII concludes the paper.

II. RELATED WORK

A. Classical SC and UV-aided SC

Zhao et al. in [12] employed more than one workers to

cooperate to maximize the overall rewards, and they designed

an equilibrium-based method. Zhao et al. in [13] proposed

two game-theoretic algorithms to achieve fair task assignment

by designing several payoff policies. Wang et al. in [14]

solved data deficiency problems for a time-continuous SC with

limited availability of workers, and proposed a polynomial-

time task assignment algorithm with entropy-based quality

improvement.

On the other hand, UV-aided SC becoming a promising

research direction for large-scale urban sensing. Xu et al.

in [15] proposed a mathematical model of UAV-aided task

allocation and a genetic-based algorithm to balance task qual-

ity and cost. Zhao et al. in [16] proposed a DRL method to

navigate multiple UAVs for data collection and improve the

energy efficiency. Wang et al. in [17] considered the disaster

response applications where PoIs are unevenly distributed in a

3-dimensional space. Ding et al. in [18] proposed a UAV-aided

MCS paradigm for large-scale and high-quality urban sensing

by using MADRL. However, none of the existing works

jointly considered to deploy heterogeneous UAVs and UGVs

simultaneously for cooperative air-ground SC, nor considering

both individuality and cooperation among them. To the best

of our knowledge, this paper is one of the first along this

direction.

B. MADRL

To address the non-stationary issue in multi-agent sys-

tem, different MADRL solutions are proposed, among which

the centralized training and decentralized execution (CTDE)

framework has achieved remarkable success, like value de-

composition methods [9], [19] that approximate the joint value

function by optimizing it for each agent. RMIX [20] investi-

gated risk-sensitive MARL, which obtained more sufficient

estimations of future returns. QPLEX [21] achieved a better

representation without violating the IGM consistency by using

a duplex dueling structure. As a typical continuous control

framework of CTDE, MADDPG [6] feeds actions of other

agents into the centralized critic for the sake of stabilizing

the training. FACMAC [22] combined the merit of QMIX and

MADDPG, where expressive non-monotonic factorization and

a centralized gradient estimator are used to allow more coordi-

nated policy changes. Policy-based MADRL approaches such

as IPPO [11] and MAPPO [10] also show promising results

for a wide range of multi-agent tasks [23], [24]. However, how

to explore individuality and cooperation simultaneously is not

explicitly discussed in those methods, which is non-trivial in

air-ground SC tasks. Intrinsic reward (i.e., reward outside the

environment) is very useful in MADRL to encourage agents

to explore individuality and cooperate with each other. Jaques

et al. [25] took the action correlation between agents (as how

much the change of one agent’s action will affect the change

of another agent’s action) as an intrinsic reward. Du et al.

[26] expected agents to learn different kinds of policies by

introducing intrinsic rewards.

III. SYSTEM MODEL

A set K ≜ {k|1, 2, ...,K} of UVs (which consists of a

set U ≜ {u|1, 2, ..., U} of UAVs and G ≜ {g|1, 2, ..., G}
of UGVs) are jointly navigated to collect data from a set of

PoIs I ≜ {i|1, 2, ..., I}. Initially, each PoI i ∈ I contains Di
0

unit data. Without loss of generality, we consider a fixed task

duration which can be divided into T timeslots of equal length

τ , and we assume each timeslot duration can be divided into

two parts, UV movement time cost τmove and data collection

time cost τcoll.

A. UAV and UGV Movement

We deploy rotary-wing drones as UAVs in an air-ground SC

task. Each UAV u flies or hovers at a constant altitude Hu.
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TABLE I
LIST OF IMPORTANT NOTATIONS USED IN THIS PAPER.

Notation Explanation

u, U,U Index, total #, set of UAVs

g,G,G Index, total #, set of UGVs

i, I, I Index, total #, set of PoIs

t, T, τmove, τcoll Index, total # of timeslots, duration for UV
movement and data collection in each timeslot

ϑut , v
u
t , v

g
t Moving direction of UAV u, movement speed

of UAV u and UGV g in timeslot [t, t+ 1)
ηut , η

g
t Energy consumption of UAV u and UGV g

during timeslot [t, t+1)

γi,u
SINR

, γi,g
SINR

, γu,g
SINR

SINR of PoI-UAV uplink channel, PoI-UGV
uplink channel, UAV-UGV relay channel

Ci,u, Ci,g , Cu,g Capacity of PoI-UAV uplink channel, PoI-
UGV uplink channel, UAV-UGV relay channel

st,ot,at, rt State, observation, action and reward over all
UVs in timeslot [t, t+ 1)

ψ, σ, ξ, κ, λ Data collection ratio, data loss ratio, energy
consumption ratio, geographical fairness, effi-
ciency

In each timeslot [t, t+ 1), each UAV u spends τmove amount

of time moving to a certain direction ϑut ∈ [0, 2π), at speed

vut ∈ [0, vUAV
max ].

Different from UAVs, UGV movement is restricted by the

roadmap. Thus, given the speed vgt ∈ [0, vUGV
max ], we assume

that each UGV g can move to a destination only if the

shortest path length between the current position and the

destination does not exceed the maximum moving range (i.e.,

τmove ·v
UGV
max ) in each timeslot [t, t+1). Due to the complexity

of city roadmap, actual moving range of a UGV is usually

much smaller than a UAV in each timeslot.

The energy consumption models of UAV u and UGV g
during each timeslot [t, t+ 1) are set as proportional to their

movement speed as:

ηut ∝ τmove · v
u
t , ηgt ∝ τmove · v

g
t . (1)

B. Data Collection by AG-NOMA Uplink Channel

We consider an AG-NOMA based uplink communications,

where UAVs and UGVs stop and receive data uploaded

from PoIs. The total available spectrum for these I PoIs are

equally divided into Z subchannels, where the unit bandwidth

is B and the power spectral density of the noise is N0.

Since UAVs are usually equipped with limited computational

resources, we assume that only UGVs can decode the uplink

data by themselves, as mobile BSs. That is, UAVs should

relay data from PoIs to UGVs. Thus, the channel models for

data collection can be divided into three types: (a) uplink

channel from PoI i to UAV u, (b) uplink channel from

PoI i′ to UGV g, and (c) relay channel from UAV u to

UGV g. Following [5], we consider air-ground co-channel

interference suppression method that pairs the direct links

and relay links on the same subchannels. Thus, there exists

a set E ≜ {(u, g, i, i′)z,t|u ∈ U , g ∈ G, i, i
′ ∈ I, i ̸= i′} of

tuples, each of which represents a data collection event in each

subchannel z and timeslot [t, t+ 1). Then, for simplicity, we

temporally omit the timeslot index t and subchannel index z
when defining the following channel models.

PoI-UAV uplink channel: considering that a ground-to-air

(G2A) link from PoI i to UAV u is either LoS or NLoS, we

calculate the corresponding factors by:

ωi,uLoS =
1

1 + ω exp(−β[ang(i, u)])
, ωi,uNLoS = 1− ωi,uLoS, (2)

where β and ω are constants related to the network coverage;

ang(i, u) is elevation angle of PoI i respect to UAV u (mea-

sured in degree), expressed as ang(i, u) = arcsin(Hu/d[i, u]);
d[i, u] denotes the direct distance between PoI i and UAV u.

Then, the channel gain can be computed as:

ςi,u = ωi,uLoSηLoS · d[i, u]
−α1 + ωi,uNLoSηNLoS · d[i, u]

−α1 , (3)

where α1 is the path loss factor of G2A channels; ηLoS and

ηNLoS are additional attenuation fading factors of LoS and

NLoS channels, respectively. We assume that the full-duplex

introduced self-interference is fully canceled, then considering

both PoI i and i′ are in the same subchannel z, the Shannon

capacity Ci,u in each subchannel can be computed as:

Ci,u = B log(1 + γi,uSINR), γi,uSINR =
ςi,uρi

N0B + ςi′,uρi′
, (4)

where γi,uSINR is the uplink signal-to-interference-plus-noise

ratio (SINR) from PoI i to UAV u; ρi is the transmission power

of PoI i; and ςi
′,uρi

′

is the interference power introduced to

UAV u by PoI i′.
PoI-UGV uplink channel: as a ground-to-ground (G2G)

channel, based on path loss and Rayleigh fading, the channel

gain can be computed as:

ςi
′,g = |hz|

2 · d[i′, g]−α2 , (5)

where α2 is the path loss factor of the G2G channels; hz is

the amplitude gain of the signals on subchannel z. Then, since

UGV g has decoded relayed data from UAV u, the capacity

of direct G2G uplinks from the PoI i′ to UGV g is:

Ci
′,g = B log(1 + γi

′,g
SINR), γi

′,g
SINR =

ςi
′,gρi

′

N0B
, (6)

where γi
′,g
SINR and ρi

′

are the SINR and transmission power for

PoI i′, respectively.

UAV-UGV relay channel: since data transmission from the

hovering UAV u to UGV g is based on air-to-ground (A2G)

links, we follow [27] and assume that UAVs relay data with

decode-and-forward scheme and perfect full-duplex technol-

ogy. Thus, similar to Eqn. (2) and Eqn. (3) in G2A channels,

we calculate the LoS factor, NLoS factor and channel gain by:

ωu,gLoS =
1

1 + ω exp(−β[ang(u, g)])
, ωu,gNLoS = 1− ωu,gLoS, (7)

ςu,g = ωu,gLoSηLoS · d[u, g]
−α1 +ωu,gNLoSηNLoS · d[u, g]

−α1 , (8)

where ang(u, g) and d[u, g] denote the elevation angle and

direct distance between UAV u and UGV g, respectively.

When decoding the relayed data from PoI i, we consider that

the useful data received by UGV g include not only relayed
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from UAV u but also from PoI i since UGV g will receive a

copy wirelessly as well. As a result, the Shannon capacity is:

Cu,g = B log(1 + γu,gSINR), γu,gSINR =
ςu,gρu + ςi,gρi

N0B + ςi′,gρi′
, (9)

where γu,gSINR is the received SINR from UAV u to UGV g on

subchannel z for relaying PoI i’s data, with interference from

PoI i′. ρu denotes the transmission power of UAV u.

Note that in this paper we assume that our system model

is based on NOMA, a promising communication technique

to utilize all the time and frequency resources through power

domain superposition coding and successive interference can-

celation. However, our proposed solution is also applicable to

other communication models, such as TDMA and OFDMA,

by simply re-defining the data collection and relay models in

Section III-B.

IV. PROBLEM DEFINITION AND FORMULATION

A. Problem Definition

We assume that each UAV/UGV moves and chooses the

nearest PoIs to access. To enforce QoS, data can be uploaded

successfully only if the SINR exceeds the given threshold in

a subchannel, otherwise data loss occurs.

Definition 1. UAV Data Collection: In timeslot [t, t + 1), a

UAV u can successfully collect Di,u
z,t amount of data from PoI

i in subchannel z by:

∆Di,u
z,t =

{

0, if min(γi,uSINR, γ
u,g
SINR) < threshold

τcoll ·min(Ci,u, Cu,g), otherwise.
(10)

Definition 2. UGV Data Collection: In timeslot [t, t + 1), a

UGV g can successfully collect Di′,g
z,t amount of data from PoI

i′ in subchannel z by:

∆Di′,g
z,t =

{

0, if γi
′,g
SINR < threshold

τcoll · C
i′,g, otherwise.

(11)

Then, when timeslot [t, t + 1) ends, the remaining amount

of data in PoI i is Di
t+1 = max(Di

t −
∑

k∈Ki
t

∑

z∆D
i,k
z,t , 0),

where Kit includes those UAVs/UGVs who access PoI i in that

timeslot.

We use five metrics to evaluate the performance of air-

ground SC tasks. First is data collection ratio ψ, defined as:

ψ = 1−

∑

i∈I D
i
T

∑

i∈I D
i
0

, (12)

where Di
T is the remaining data from PoI i. Second is data

loss ratio σ, due to the impact of low SINR as:

σ =

∣

∣{E ⊂ Kit, ∆Di,u
z,t = 0 ∨∆Di′,g

z,t = 0}
∣

∣

Z · T · (U +G)
. (13)

Third is energy consumption ratio ξ, defined as:

ξ =
1

U

T
∑

t=1

∑

u∈U

ηut
Eu0

+
1

G

T
∑

t=1

∑

g∈G

ηgt
Eg0

, (14)

where Eu0 and Eg0 are the initial energy reserve for UAV u
and UGV g, respectively. Fourth is geographical fairness κ,

following Jain’s fairness index [28] as:

κ =
(
∑

i∈I(D
i
0 −D

i
T )/D

i
0)

2

I
∑

i∈I((D
i
0 −D

i
T )/D

i
0)

2
. (15)

The overall objective is to maximize data collection ratio ψ
and geographical fairness κ, while minimizing data loss ratio

σ and energy consumption ratio ξ simultaneously. To this end,

we use a comprehensive, integrated metric λ to measure the

performance of the task, called “efficiency”, as

λ =
ψ · (1− σ) · κ

ξ
. (16)

B. Problem Formulation

We formulate an air-ground SC task as a Dec-POMDP [29],

represented by a tuple (K,S,O,A,R,Pr, γ), where K, S ,

O and A are the set of UVs, states, local observations and

actions, and γ is the discount factor. The system works

as follows. At the beginning of a task, the global state is

initialized as s0. In each timeslot [t, t + 1), each UV k ∈ K
has its own observations o

k
t of state st, and then decides an

action a
k
t sampled from its policy a

k
t ∼ πk(·|okt ). After all

UVs have made decisions, the environment receives the joint

action at = {a
k
t }
K
k=1 and then calculate the environmental (i.e,

extrinsic) reward rkt,ext = R
k(st,at) for each k; followed by

transiting to the next state st+1, based on the state transition

distribution Pr(st+1|st,at).

1) State and observation space: The global state st is

a vector, concatenating two types of information: each UV

k’s current 2-D position along with its remaining energy

(xkt , y
k
t , E

k
t ), and each PoI i’s position with its remaining

amount of data (xi, yi, Di
t). Then, each k’s observation o

k
t

has the identical size as the global state st. However, when

certain UVs or PoIs are out of the observable range of a UV

k in timeslot [t, t + 1), their corresponding information will

become (0, 0, 0) in o
k
t as blind.

2) Action space: Since UAVs and UGVs are two types of

heterogeneous UVs, let action spaces be Au and Ag , respec-

tively. For UAVs, Au is continuous and represents the control

of moving direction and speed, i.e., a
u
t = (ϑut , v

u
t ) ∈ R

2.

For UGVs, considering the restrictions of a roadmap, we set

Ag ⊂ Au because any movement outside the road or out of

the maximum moving range is forbidden.

3) Reward function: It measures the successfully collected

amount of data by a UAV/UGV in timeslot [t, t+ 1), as:

rkt,ext =
∑

i∈I

∑

z∈Z

(

∆Di,k
z,t

I ·Di
0

− ωcoll · ι
i,k
z,t

)

−ωmove ·
ηkt
Ek0

, (17)

where ιi,kz,t = 1 if data loss occurs, i.e., ∆Di,k
z,t = 0; otherwise

ιi,kz,t = 0. ωmove and ωcoll are penalties of energy consumption

and data loss, respectively. Thus, for each k, the goal of
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the optimization problem is to find an optimal policy πk to

maximize the accumulated discounted reward:

max
πk

E
[
∑T
t=1

γt rkt,ext(o
k
t ,a

k
t )
]

s.t. o
k
t ∈ O, π

k(·|okt ) ∈ A.
(18)

V. PROPOSED SOLUTION: h/i-MADRL

To solve Dec-POMDP in air-ground SC tasks, we propose

a MADRL-based solution called “h/i-MADRL”. As shown in

Fig. 1, it consists of a base module compatible to any multi-

agent actor-critic architectures, e.g., MADDPG [6], IPPO

[11] and MAPPO [10], as well as two novel plug-ins: (a)

intrinsic reward driven exploitation of individuality (i-EOI) as

an enhancement to the state-of-the-art approach EOI [30], and

(b) heterogeneous coordinated policy optimization (h-CoPO)

as an improvement to the state-of-the-art approach CoPO [31].

The former encourages a more obvious division of different

UVs by extracting their individuality, and the latter constructs

correlations between different UAVs and UGVs to achieve

better cooperative patterns. For simplicity, we omit the timeslot

index t in this section.

A. Exploring Individuality by Self-supervised Identity Classi-

fier: i-EOI

Fully exploring individually is important to finish an air-

ground SC task. This is because that PoIs are unevenly

distributed in a task area but each UV can only observe its

own partial observation, thus they need to move constantly

to achieve spatial division of work, while avoid going to the

same area at the same time which results in waste of resources.

Furthermore, since UAVs and UGVs are heterogeneous with

different capabilities (e.g, movement speed and whether the

movement is restricted by the roadmap, data transmission

capacity due to interferences), introducing individuality to self-

interested UVs is promising to make them aware of their own

duty in the task (e.g., UAVs move to remote areas while UGVs

stay around UAVs to decode their data) and eventually improve

efficiency.

To this end, we propose to extract UV’s individuality

and import an auxiliary task called “intrinsic reward driven

exploitation of individuality (i-EOI)”. The goal is to accurately

identify a UV k from its given distinct observation o
k, by

training a global probabilistic classifier pµ parameterized by

µ, whose input is o
k and output pµ(·|o

k) is the probability of

the observation belonging to each UV. By defining an intrinsic

reward pµ(k|o
k) that denotes the possibility of a certain

UV is accurately predicted/identified from its observation, the

compound reward for a UV k is expressed as:

rk = rkext + ωin · pµ(k|o
k), (19)

where
∑

k pµ(k|o
k) = 1, rkext is the extrinsic reward from the

environment, and ωin is a tuning hyperparameter to weight

the importance between intrinsic and extrinsic rewards. The

physical meaning of intrinsic reward is that, since UVs can

only partially observe the environment, reaching far away

areas can help a certain UV to distinguish its observation from

others and identify itself, and thus receiving higher intrinsic

reward motivates a clearer division of work.

Since UVs maximize the expected future reward, the dif-

ference in terms of UV policies are reinforced, which makes

them more identifiable and self-interested, in turn, boosts the

training of classifier pµ. Therefore, the learning process is

closed-loop with positive feedback. We also use the regularizer

which maximizes the mutual information between a UV’s

identity and observation, computed as:

MI(K;O) = H(K)−H(K|O)

= H(K)− E
o∼pµ(o)[

∑

k

−pµ(k|o
k) log pµ(k|o

k)]. (20)

During training, the number of samples for each UV is equal,

thusH(K) is a constant when we uniformly sample < o
k, k >

from the data buffer in a given actor-critic method (e.g.,

experience replay used in MADDPG) to train the classifier.

As a result, maximizing MI(K;O) is equivalent to minimize

H(K|O) = Cross Entropy(pµ(·|o
k), pµ(·|o

k)). The signifi-

cance is that if its observation is more identifiable, it is easier

to infer a UV that visits the given observation most, there-

fore maximizing this mutual information can accelerate the

development of UV individuality. We can train the classifier

pµ(k|o
k) by using a self-supervised loss as:

LEOI = Cross Entropy(pµ(·|o
k), one hot(k))

+ ϵ · Cross Entropy(pµ(·|o
k), pµ(·|o

k)),
(21)

where ϵ is hyperparameter, one hot(k) refers to the one hot

vector with length K where the k-th dimension is 1.

Finally, we discuss the significance of adding i-EOI for air-

ground SC. In the air-ground SC task, obtaining a new local

observation usually refers to discovering and accessing a group

of PoIs that have not been seen before, which likely lead

to a new trajectory pattern with higher cumulative extrinsic

reward. That is, intrinsic reward can be regarded as a signal

to strengthen, rather than weaken the stimulation of extrinsic

reward, incurring UVs forgetting to better complete the task

itself to obtain individuality.

B. Encouraging UV Cooperations by h-CoPO

Since UAVs and UGVs are heterogeneous UVs with dif-

ferent movement patterns and communication capacities, it

is hard to model them by fully cooperative MARL, e.g.,

VDN [19] and QMIX [9], which share their policy networks

and rewards. On the other hand, to achieve our complicated

goal, UVs must learn to cooperate under the AG-NOMA

communications model. That is, UAVs are able to explore

wider areas than UGVs but their received data should have to

be relayed to UGVs for decoding. Thus, a fully independent

learning scheme like IPPO [11] may trap into the local optima.

To this end, we propose h-CoPO, which constructs interactive

correlations between UVs to form the appropriate level of

coordination. It is reasonable to assume that each UV may not

interact with all others simultaneously, we define two kinds of

“neighbors” whom an UV should interact with.
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Fig. 1. Overall proposed solution h/i-MADRL.

Heterogeneous relaying neighbors NHE: we define UAV

u and UGV g as heterogeneous neighbors in a relayed pair if

they are in the same subchannel, and their collected amount

of data are affected by each others due to interference.

Homogeneous nearby neighbors NHO: since each UV

may be affected by its physically nearby UVs due to task

competition [32], we simply consider them as neighbors.

Appropriate level of coordination among all UVs might

differ from task to task. For example, in a larger task area, the

appropriate distance between UAV and UGV in a relayed pair

might be more crucial to prevent data loss (with satisfactory

received SINR). Hence, it is challenging to generate their

cooperation preferences through a top-down design or a priori

knowledge. To this end, we propose a bi-level coordination

method. First, each UV chooses to be self-interested or cooper-

ative to neighbors, and then selects the proportion of attention

focusing on both heterogeneous and homogeneous neighbors.

To depict such characteristics, inspired by the ring measure of

social value orientation [33], [34], in this paper we propose a

spherical measure to model the bi-level coordination.

Specifically, we import two local coordination factors

(LCFs) ϕ, χ ∈ [0◦, 90◦] to the current reward function of each

UV. We assume that whether a UV is self-interested to others

or not is determined by ϕ, while how much attention it pays

attention to each kind of neighbors is determined by χ. Thus,

weighted by LCFs, we define a cooperation-aware reward as:

rkCO = rk cosϕ+
(

rkHE cosχ+ rkHO sinχ
)

sinϕ, (22)

where rkHE and rkHO are average reward of heterogeneous and

homogeneous neighbors, calculated by:

rkHE =

∑

n∈Nk
HE

rn

|N k
HE|

, rkHO =

∑

n∈Nk
HO

rn

|N k
HO|

. (23)

Although we hypothesize that the cooperation preference of

UAVs and UGVs exist, the selection of LCFs still remains a

major challenge. We conduct a automatic search of optimal

LCFs aided by meta learning approach [31] and details will

be discussed in Section V-C.

Apart from the existing actor and critic networks in a given

base module, our proposed h-CoPO introduces another three

kinds of critic networks, namely: heterogeneous neighborhood

value network V kHE and homogeneous neighborhood value

network V kHO for each UV k, which input local observation

o
k, and one overall value network Vall shared by all UVs,

which inputs state s.

C. Details of Training Process: IPPO as Base Module

To better illustrate our method, we use IPPO [11] as the

exemplar base module. In our scenario, the individual value

function and advantage function of UV k in timeslot [t, t+1)
can be computed as:

V kt = V k(okt ) = E

[

T
∑

t′=t

γt
′−trkt′

]

,

Akt = Ak(okt ,a
k
t ) = rkt + γV kt+1 − V

k
t .

(24)

Note that rkt combines intrinsic and extrinsic rewards by

Eqn. (19). Then, by adopting a truncated importance sampling

factor ϱ =
πk
new

(ak|ok)

πk
old

(ak|ok)
, the surrogate objective of IPPO is

written as:

JIPPO(π
k) = E(s,a)min(ϱAk, clip(ϱ, 1− ϵ, 1 + ϵ)Ak), (25)

where clip function helps remove the incentive for moving rk

outside of the interval [1− ϵ, 1+ ϵ]. The value function V k is

updated by mean squared error loss function:

Lk = E[rkt + γV k(okt+1)− V
k(okt )]

2. (26)

Algorithm 1 shows the pseudo-code of our solution. First,

we initialize i-EOI classifier, overall value network Vall, data

buffer shared by all UVs (Line 1) and learnable parameters

θk = {πk, V k, V kHE, V
k
HO} for each k (Line 2). ϕ and χ

are initialized to 0◦ and 45◦ for each k (Line 3), i.e., all

UVs are completely self-interested and do not hold a priori

preference between each type of neighbors. Then, loop for

sampling and training is started (Line 4). After interacting

with the environment (Line 5-10) and storing the sampled data

(okt , akt , rkt,ext) and st into the data buffer (Line 11), training

started. We consecutively update the i-EOI classifier (Line 12),

update the policy (Line 14-20) for M1 times and update the

LCFs for M2 times (Line 21-23) as sample reuse in PPO [35],

in each time the data buffer is traversed to conduct mini-batch

training.

For policy updating, reward rk is computed with the in-

trinsic reward (Line 16). Then considering the impact brought

by neighbors, we compute the corresponding value functions

V kHE, V
k
HO and advantage functions AkHE, A

k
HO by Eqn. (24),

and then extend cooperation-aware reward into cooperation-

aware advantages (Line 17), by:

AkCO(ϕ, χ)=A
kcosϕ+

(

AkHEcosχ+AkHOsinχ
)

sinϕ. (27)
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Algorithm 1: h/i-MADRL

1 Initialize environment, i-EOI classifier pµ, overall

value network Vall, data buffer.

2 Initialize policy network πk, value network V k,

heterogeneous neighborhood value network V kHE,

homogeneous neighborhood value network V kHO for

each UV k.

3 Initialize ϕk = 0◦ and χk = 45◦ for each k.

4 for iteration = 1, ..., N do

5 Clean data buffer

6 for t=0, 1, ... T-1 do

7 for k=1, 2, ... K do

8 Get local observation o
k
t

9 UVs select action a
k
t ∼ πk

10 Interact the environment with

at = {a
k
t |k = 1, 2, ...,K}

11 Store the tuple (okt , akt , rkt,ext) for each UV

and state st in data buffer

12 Update pµ by Eqn. (21)

13 Store current policy θkold ← θk for each UV

14 for m = 1, ..., M1 do

15 for k=1, 2, ... K do

16 Compute reward rk by Eqn. (19)

17 Compute cooperation-aware advantages

AkCO(ϕ, χ) by Eqn. (27)

18 Update πk by Eqn. (28)

19 Update V k, V kHE, V kHO by Eqn. (26)

20 Compute rall and update Vall by Eqn. (26)

21 for m = 1, ..., M2 do

22 for k=1, 2, ... K do

23 Update ϕk, χk by Eqn. (30).

The surrogate objective function of h-CoPO can replace

JIPPO to update policy (Line 18) by:

JCO(θ
k, ϕ, χ)=E(s,a) min

(

ϱAkCO, clip(ϱ, 1− ϵ, 1+ ϵ)A
k
CO

)

.

(28)

Three value networks for each UV and overall value network

Vall are updated in the inner and outer loop respectively (Line

19-20).

For LCFs updating, let rall be sum of all UV’s reward in

all timeslots, and we define the overall objective as:

Jall = E(s,a)[rall] = E(s,a)

[

∑

t

∑

k

rkt

]

. (29)

Then, we can maximize the overall performance of an air-

ground SC task by finding optimal LCFs in terms of maxi-

mizing rall, i.e., computing the gradient of overall objective

w.r.t LCFs as in Line 23:

∇φ,χJall(θ
k
new) = ∇θknewJall(θ

k
new)∇φ,χθ

k
new, (30)

where θknew denotes the policy parameters of UV k after

optimizing Eqn. (28). Here the first term of Eqn. (30) is

TABLE II
SIMULATION SETTINGS.

Notation Value Notation Value Notation Value

T 100 Eg
0

2000 KJ α2 4

τmove 10 vUAV
max 18 m/s ηLoS 0 dB

τcoll 10 vUGV
max 10 m/s ηNLoS -20 dB

I 100 Hu 60 m ω 9.6

Di
0

3 Gbit Z 3 β 0.16

U 2 B 20 MHz ρu 3 watts

G 2 N0 5× 10−20 watt/Hz ρi, ρj 0.1 watts

Eu
0

1500 KJ α1 2 SINR threshold 0 dB

analogous to the gradient of IPPO in Eqn. (25) but the

objective is replaced with Jall as:

E(s,a)∼θk
old

[∇θknewmin(ϱAall(s,a), clip(ϱ, 1−ϵ, 1+ϵ)Aall(s,a)],
(31)

where the overall advantage Aall can be computed by

Eqn. (24), by leveraging overall value network Vall. θ
k
old

denotes the policy parameters of UV k before optimizing

Eqn. (28). Note that the samples (s,a) are generated by the

behavior policy θkold. The second term of Eqn. (30) can be

computed by first-order Taylor expansion:

∇φ,χ(θ
k
old + α∇θk

old

JCO(θ
k
old, ϕ, χ))

= αE(s,a)∼θk
old

[∇θk
old

log πθk
old

(ak|ok)∇φ,χA
k
CO(ϕ, χ)],

(32)

where ∇θk
old

JCO(θ
k
old, ϕ, χ) have the same form with vanilla

policy gradient [36], and α is the learning rate of gradient

ascent in meta-learning.

Note that the base module of h/i-MADRL can also be

MAPPO, to simply replace the input of critic networks V k

(see Eqn. (26)) from the local observation o
k by the global

state s.

VI. PERFORMANCE EVALUATION

We conduct the experiments on two real-world student

movement trajectories in Purdue [37] (with 59 traces) and

NCSU [38] (with 33 traces) campuses, where each trace

corresponds to a student. PoIs are considered as places which

are frequently visited and we take I = 100 most frequently

visited PoIs into account for both two campuses. We use

Google Map to mark the campus map data, including the

specific roadmap in each campus which is crucial for UGV

movement.

Default simulation settings are summarized in Table II.

vUAV
max = 18 m/s is set by referring to the technical report

of industrial UAVs like DJI Matrice 600 [39]. By considering

the height of the tallest buildings in Purdue and NCSU campus

(i.e., 48.768 meters and 55.778 meters respectively), all UAVs’

hovering height are set to Hu = 60 meters, which is safe for

UAVs to fly around without crashing into buildings.

A. Baselines and Evaluation Metrics

We compare h/i-MADRL with five baselines:

• h/i-MADRL(CoPO): It replaces our proposed module h-

CoPO with CoPO [31], in which two kinds of neighbors

are considered equivalently.
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TABLE III
HYPERPARAMETER TUNING

w/o SP, w/o CC w/ SP, w/o CC w/o SP, w/ CC w/ SP, w/ CC

Purdue

ωin = 0.001

ψ 0.803 0.719 0.725 0.763

σ 0.025 0.063 0.150 0.050

ξ 0.090 0.090 0.091 0.092

κ 0.815 0.751 0.770 0.789

λ 7.093 5.620 5.217 6.214

ωin = 0.003

ψ 0.834 0.816 0.810 0.808

σ 0.007 0.117 0.057 0.023

ξ 0.092 0.091 0.092 0.096

κ 0.874 0.852 0.859 0.876

λ 7.872 6.715 7.106 7.210

ωin = 0.01

ψ 0.777 0.753 0.687 0.728

σ 0.020 0.091 0.068 0.058

ξ 0.094 0.092 0.114 0.102

κ 0.790 0.728 0.807 0.840

λ 6.407 5.414 4.526 5.652

NCSU

ωin = 0.001

ψ 0.775 0.746 0.790 0.711

σ 0.069 0.038 0.088 0.054

ξ 0.106 0.101 0.095 0.095

κ 0.822 0.833 0.835 0.762

λ 5.607 5.916 6.305 5.387

ωin = 0.003

ψ 0.822 0.785 0.779 0.777

σ 0.019 0.033 0.035 0.088

ξ 0.100 0.107 0.108 0.095

κ 0.888 0.833 0.831 0.809

λ 7.158 5.903 5.768 6.029

ωin = 0.01

ψ 0.823 0.766 0.787 0.745

σ 0.066 0.057 0.025 0.133

ξ 0.098 0.092 0.100 0.102

κ 0.877 0.813 0.819 0.803

λ 6.861 6.421 6.284 5.089

• MAPPO [10]: It is a state-of-the-art MADRL approach as

an extension of PPO. It uses a number of practical tech-

niques (e.g., value normalization and incorporating agent-

specific features to state) to improve the performance of

multi-agent tasks.

• e-Divert [40]: It is a state-of-the-art MADRL approach

for SC tasks. It is based on CTDE schemes aided by a

distributed prioritized experience replay and an LSTM for

sequential modeling.

• Shortest Path: Each UV finds the shortest path by genetic

algorithm to visit a sequence of PoIs. Note that shortest

paths of UGVs are under the restriction of roadmap.

• Random: For each UV k, action a
k
t is uniformly sampled

from its action space at timeslot t.

We use efficiency λ as an integrated, comprehensive metric

for comparisons, while showing individual metrics in air-

ground SC tasks in Purdue and NCSU. We use Pytorch

1.8.1 for implementation on Ubuntu 18.04.2 LTS with eight

GeForce RTX 3090 graphic cards. We train all methods 10,000

iterations, and test each model 50 times to take an average.

B. Hyperparameter Tuning

Suitable hyperparameters in i-EOI and h-CoPO will sig-

nificantly improve the overall performance of h/i-MADRL.

As shown in Table III, We tune ωin to study the impact

of introducing different portion of the intrinsic reward in i-
EOI. Then, for h-CoPO, we jointly consider whether UVs

share the same neural network parameters (SP, i.e., forced to

be homogeneous), and whether to use the centralized critic

network (CC, i.e., use the global state s as the input to

each V k). For other hyperparameters, we simply use common

settings as in [10].

TABLE IV
IMPACT OF LINEARLY DECREASED ωin

ωin 0.01→ 0.001 0.003 → 0

λ (Purdue) 7.803 7.744

λ (NCSU) 5.707 6.210

TABLE V
IMPACT OF NEIGHBOR RANGE

% w.r.t task area size 10 25 33 50 66

λ (Purdue) 6.870 7.872 6.381 6.800 5.960

λ (NCSU) 6.214 7.158 6.258 6.234 5.304

We observe that ωin = 0.003 yields a peak in terms of

efficiency λ. When ωin is too low, UVs tend to visit similar

areas since they all start at the same point, which results in

waste of resources and many remote PoIs are hard to visited

in the limited task duration. This is because UV behaviors

may become similar and fail to visit different PoIs, if not

considering too much individuality to explore far away distinct

areas than others. On the contrary, giving too much weight ωin

on the intrinsic reward might do harm to the extrinsic reward

from the environment. Besides fixed ωin, we also linearly

decrease ωin during training. From Table IV, we find that it

makes the intrinsic reward unstable and thus deteriorating the

overall performance, compared with results in Table III). This

is because individuality does not conflict with the overall goal

of air-ground SC tasks (as mentioned in Section V-A), which

differs from the original EOI [30].

For h-CoPO, we find that it is not a good choice to share

the same neural network parameters or utilize the centralized

value network. This is because these two structures increase

the homogeneity of UVs, in terms of making decisions and

estimating the state values, respectively, which are important

tricks for QMIX [9] and MAPPO [10] in homogeneous

cooperative games [7], [8]. However, they are not applicable to

h-CoPO which considers how to take advantages of different

UVs to form a heterogeneous coordination pattern in our

considered air-ground SC tasks.

Next, we aim to study the impact of distance to distinguish

physically nearby homogeneous neighbors, as a percentage

w.r.t the size of the task area. From Table V, we see 25% gives

the highest efficiency, because a shorter neighbor range may

ignores some close-by useful homogeneous UAVs/UGVs for

cooperation, while a much longer range includes unnecessary

UVs which should not be cooperated at this time. Hence, we

observe that hyperparameter set “ωin= 0.003, w/o SP, w/o CC,

neighbor range is 25% w.r.t task area size” yields the best

performance in terms of efficiency λ which will be used for

the rest of performance comparisons.

C. Ablation Study

We perform the ablation study by gradually removing two

plug-in modules of h/i-MADRL, under the default simulation

settings (see Table VI). When i-EOI is removed, We observe

that the data collection ratio in Purdue and NCSU is reduced
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(j) IPPO (NCSU)

(e) IPPO (Purdue)

(f) ℎ/ⅈ-MADRL (NCSU)

(a) ℎ/ⅈ-MADRL (Purdue)

(g) ℎ/ⅈ-MADRL(CoPO) (NCSU)

(b) ℎ/ⅈ-MADRL(CoPO) (Purdue) (d) ℎ/ⅈ-MADRL w/o ⅈ-EOI (Purdue)

(i) ℎ/ⅈ-MADRL w/o ⅈ-EOI (NCSU)(h) ℎ/ⅈ-MADRL w/o ℎ-CoPO (NCSU)

(c) ℎ/ⅈ-MADRL w/o ℎ-CoPO (Purdue)

Fig. 2. Different trajectory patterns over ablation study in Purdue and NCSU (UAVs: red/pink, UGVs: blue/light blue, PoIs: black dots; green ellipses indicate
self-interested pattern of UGVs, and black ellipses denote areas with unvisited PoIs).
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Fig. 3. Impact of no. of UAVs/UGVs (Purdue).
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Fig. 4. Impact of no. of UAVs/UGVs (NCSU).

TABLE VI
ABLATION STUDY

ψ σ ξ κ λ

Purdue

h/i-MADRL 0.834 0.007 0.092 0.874 7.872

h/i-MADRL w/o i-EOI 0.699 0.021 0.096 0.846 6.020

h/i-MADRL w/o h-CoPO 0.745 0.061 0.102 0.816 5.571

h/i-MADRL w/o i-EOI, h-CoPO 0.654 0.100 0.101 0.516 3.007

NCSU

h/i-MADRL 0.822 0.019 0.100 0.888 7.158

h/i-MADRL w/o i-EOI 0.706 0.056 0.109 0.806 4.922

h/i-MADRL w/o h-CoPO 0.777 0.088 0.106 0.809 5.404

h/i-MADRL w/o i-EOI, h-CoPO 0.585 0.068 0.139 0.613 2.404

by 13% and 12%, respectively. This is because that lack of

individuality will make different UVs behave similarly and

fail to collect data from those PoIs especially in corner areas.

When h-CoPO is removed, we observe that the data loss

ratio increases by 5% and 7% for two datasets, respectively,

resulting in the decrease of efficiency. This is because lack of

UV cooperations will make heterogeneous UAVs and UGVs

become more self-interested and fail to form the successful

data upload by AG-NOMA uplink channel.

We further visualize the trajectories in both campus datasets

(see Fig. 2). By comparing subfigures in Fig. 2 vertically, when

using CoPO instead of our proposed h-CoPO, we see that

UGVs fail to approach UAVs to serve as mobile BSs. This

is because lack of heterogeneity makes it difficult to form an

AG-NOMA communications pattern for data collection, where

UGVs getting closer to UAVs results in higher data rates.

Therefore, UAVs spend more time to catch UGVs to avoid data

loss, which eventually lead to some unvisited PoIs as shown

in Fig. 2(b) and (g). If entirely removing h-CoPO, we observe

selfish behaviors of UGVs in Fig. 2(c), (h). In both datasets,
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Fig. 5. Impact of no. of subchannels (Purdue).
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Fig. 6. Impact of no. of subchannels (NCSU).
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Fig. 7. Impact of UAV hovering height (Purdue).
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Fig. 8. Impact of UAV hovering height (NCSU).

the light blue UGV goes to the upper right corner to collect

data and thus receiving more extrinsic reward. This is because

that UGVs are exploring the individuality only by using i-
EOI and form egocentric behaviors, regardless of their limited

mobility compared to UAVs. Next, we discuss the advantages

of i-EOI by comparing Fig. 2(a), (f) and Fig. 2(d), (i). We

observe too many unvisited PoIs, because all UAVs and UGVs

lose individuality and visit similar areas, rather than the proper

division of work. The similar results can be seen in Fig. 2(e),

(j), where UAVs and UGVs behave similarly around the start

point and fail to access PoIs in remote areas.

D. Comparing with Five Baselines

To justify the effectiveness and robustness of h/i-MADRL,

we change the number of UAVs/UGVs (of equal amount),

SINR threshold, number of subchannels and hovering height

of UAVs, respectively.

1) Impact of no. of UAVs/UGVs: With fewer UVs, h/i-
MADRL achieves higher performance in both datasets (see

Fig. 3 and Fig. 4). Taking NCSU for example as a big campus,

when 2 UAVs and UGVs are deployed, h/i-MADRL obtains

λ = 7.158 which is 1.97 and 2.31 times higher than MAPPO

and e-Divert (see Fig. 4(a)). Without i-EOI, all five baselines
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Fig. 9. Impact of SINR threshold (Purdue).
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Fig. 10. Impact of SINR threshold (NCSU).

cannot navigate UVs to behave in different mobility patterns.

As a result, UVs fail to access PoIs in remote areas (see

Fig. 4(b) and Fig. 4(d)).

As more UVs are deployed, the attained efficiencies of all

methods first rise and then drop, since the capability of data

collection becomes saturated and the task starts to suffer from

a severe data loss (see Fig. 3(c) and Fig. 4(c)). This is because

deploying more UVs increase the density and the interference

of AG-NOMA data uplink. As a result, lower received SINR

is more likely to happen. When no. of UAVs/UGVs is 5 in

NCSU, h/i-MADRL obtains λ = 10.024, 32% higher than

h/i-MADRL(CoPO) (see Fig. 4(a)). The main reason is that

CoPO does not make a distinction between them UAVs and

UGVs, while h-CoPO forms a more detailed and accurate

cooperation by treating them as heterogeneous modalities,

which may help to improve the quality of AG-NOMA uplink

channel and alleviate the consequence of data loss.

2) Impact of no. of subchannels: As shown in Fig. 5

and Fig. 6, the efficiencies of all methods first increase and

then decrease when more subchannels are employed. More

subchannels pose the challenge of the larger solution space,

which makes it more challenging to optimize UV scheduling

policies. However, even when the no. of subchannels is 10,

h/i-MADRL still achieves the highest efficiency λ = 8.991
in Purdue, which is 23% higher than that of the best baseline

h/i-MADRL(CoPO) (see Fig. 5(a)).

3) Impact of UAV hovering height: As shown in Fig. 7 and

Fig. 8, we observe that h/i-MADRL significantly outperforms

all baselines in terms of efficiency when the hovering height

of UAVs is relatively low (from 50m to 90m). However, this

advantage becomes weaker as the hovering height increases.

This is because lower height can decrease the path loss and

increase the average capacity of the PoI-UAV uplink channel

and the UAV-UGV relay channel, which strengthens the UAVs’

engagement in AG-NOMA and brings clearer benefits of

considering cooperation and individuality. On the contrary,

if UAVs are deployed so high that relayed data from UAVs

can be ignored due to the big path loss, our scenarios can be

simplified as a ground SC scenario (the reason why MAPPO

and e-Divert can achieve performance close to h/i-MADRL

when the UAV hovering height is 150m).

4) Impact of SINR threshold: As shown in Fig. 9 and

Fig. 10, we observe that h/i-MADRL is quite robust to SINR

threshold (referring to as the QoS constraints in communica-

tions systems) and its attained data loss ratio is significantly

lower than all baselines. Even when the SINR threshold is

7.0dB (very stringent QoS requirement), data loss ratio of h/i-
MADRL is only 14% and 33% of Shortest Path in Purdue

and NCSU (see Fig. 9(c) and Fig. 10(c)). Also, Shortest Path

severely suffers from a high data loss when SINR threshold

increases, since it only optimizes the trajectories based on the

total movement distance. As a result, the benefits using UAV

and UGV in a relayed pair is not exploited.

Finally, regardless of above settings, h/i-MADRL keeps

energy consumption to lowest level. Especially in NCSU

of bigger campus, energy consumption ratio is 20% of the

Random approach on average (see Fig. 10(e)). Also, without

encouraging UV cooperation by h-CoPO, both MAPPO and

e-Divert tend to deploy UGVs to access PoIs in remote areas,

thus consuming a relatively big amount of energy to obtain

a higher data collection ratio. However, their efficiencies are

still lower than h/i-MADRL.

E. Visualization of UV cooperation

To better illustrate “air-ground coordination” by h/i-
MADRL, we further demonstrate two highlighted trajectories
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Fig. 11. UV coordination and LCFs value of UVs (roadmaps are visually illustrated in (a) and (b); In (c), pink stars refer to PoIs, and white lines refer to
the PoI-UAV uplink channel and the UAV-UGV relay channel).

TABLE VII
COMPUTATIONAL COMPLEXITY

Method Time Cost (ms) Graphic Card Mem. Usage (MB)

h/i-MADRL 1.329 686

h/i-MADRL(CoPO) 1.329 686

MAPPO 1.329 686

e-Divert 2.248 793

of UVs in Fig. 11(a) and Fig. 11(b). we observe a clear

coordination pattern of the light blue UGV in both datasets.

In NCSU, during timeslots 20∼50, the light blue UGV stays

besides the pink UAV in order to receive its relayed data.

Then, during timeslots 75∼100, the light blue UGV did

not access the remote area until the red UAV arrives. This

example confirms that h-CoPO module helps the spatio-

temporal synchronization between UAVs and UGVs in the

same subchannel. We also implemented a simulator by Unity

2021.3.4f1c1 as shown in Fig. 11(c). In this snapshot, the

coordination pattern between PoIs, UAV and UGV during

timeslots 20∼50 is presented.

Furthermore, we visualize the learned mean LCF values

(ϕ, χ) of UAVs and UGVs in Fig. 11(d). We observe that

UGVs’ average ϕ is around 10◦ and 40◦ in z-axis in Purdue

and NCSU respectively, which indicates UGVs put a certain

degree of attention into their neighbors, and UGVs in NCSU

are more cooperative than those in Purdue. In addition, UGVs

also focus more on collaborating UAVs for data relaying,

confirmed by χ = 40◦ and χ = 5◦ in x/y-axis in Purdue

and NCSU campuses, respectively. On the contrary, UAVs’ ϕ
remains nearly 0◦ in z-axis, since UAVs move quickly and

collect more data than UGVs, while UGVs move relatively

slowly to become mobile BSs for receiving and decoding

UAVs’ relayed data. As our defined reward function is largely

determined by the collected data amount, UAVs whose only

responsibilities are data collection should become more ego-

istic than UGVs.

F. Computational Complexity

Since h/i-MADRL belongs to the category of multi-agent

Markovian actor-critic algorithms which uses mini-batches of

experience to train policies by maximizing the discounted

reward, we can follow [41] and use the sample complexity to

characterize the convergence rate, approximated by achieving

E
[

∥∇θkJCO(θ
k)∥2

]

≤ ϵ (defined in Eqn. (28)) , denoted

by: O
(

ϵ−2 log
(

ϵ−1
))

, where ϵ is hyperparameter. From our

experiments, we obtain that h/i-MADRL requires 225k and

606k samples to achieve ϵ = 0.5, 0.4 on Purdue, and 479k and

659k samples to achieve ϵ = 0.7, 0.6 on NCSU. By contrast,

MAPPO requires 493k and 868k on Purdue, 590k and 750k

on NCSU, a lot more than h/i-MADRL to achieve the same

ϵ value, respectively.

h/i-MADRL only contains fully connected layers, which

achieves fast inference speed on both CPUs and GPUs. That is,

GPUs are not necessary in h/i-MADRL. Considering GPU is

expensive and of big size, which makes it costly to be deployed

in UAVs, our proposed solution is cost-effective in real air-

ground SC tasks. Table VII shows the time cost results. We

observe that the running time to select actions by h/i-MADRL

in a timeslot is the same as MAPPO (i.e, same as the exemplar

base module IPPO), since the probability classifier introduced

by i-EOI and three value network introduced by h-CoPO

are only used in training, under the CTDE framework. That

is, h/i-MADRL improves performance without introducing

additional time and space costs.

VII. CONCLUSION

In this paper, we propose a novel MADRL framework

called h/i-MADRL for air-ground SC tasks, which consists

of one base module of any actor-critic MARL algorithm (e.g.,

IPPO, MADDPG, etc.), and two novel plug-in modules i-
EOI and h-CoPO. i-EOI helps accomplish a better spatial

division of work by adding intrinsic rewards, and h-CoPO

enhances the capacity of accurately modeling the cooperation

preference among heterogeneous UAVs and UGVs. Extensive

experimental results on two real-world datasets from student

trajectories in Purdue and NCSU campuses confirm that h/i-
MADRL achieves a greater exploration of both individuality

and cooperation, resulting in a better performance in terms of

efficiency compared with all five baselines.
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